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Abstract. Let K be a field complete with respect to a discrete valuation
whose residue field is perfect of an odd positive characteristic. We study the
ramification in the cohomology of a smooth proper surface X defined over K,
under the assumption that X admits an integral model X whose special fibre
has at worst ordinary double points. We will introduce a numerical invariant
of X , in terms of which the ramification in the cohomology of X is determined.

1. Introduction

Let K be a field which is complete with respect to a discrete valuation. Assume
that its residue field k is perfect of characteristic p > 0. We fix an algebraic
closure K of K, and let GK be the Galois group Gal(K/K). There is a short
exact sequence

1→ IK → GK → Gk → 1

where IK , called the inertia subgroup of GK , is the largest subgroup of GK which
acts trivially on the residue field of K. The quotient Gk is naturally identified
with the absolute Galois group of k.

When X/K is an algebraic variety and ` is a prime, the etale cohomology
group H i(X/K,Q`) is naturally equipped with a GK-action. The analysis of
this GK-action is of a great interest, which is illustrated by the celebrated theorem
of Serre-Tate [12] and Neron-Ogg-Shafarevich [9].

Theorem (Serre-Tate, Neron-Ogg-Shafarevich). Let A/K be an abelian variety
and ` be any fixed prime different from p. The action of IK on H1(A/K,Q`) is
trivial if and only if A has good reduction.

WhenX is a smooth proper variety overK, we sayX has good reduction if there
is a smooth proper map X → Spec (R) between algebraic spaces, where R is the
valuation ring of K, whose generic fibre is isomorphic to X. The above theorem is
established for elliptic curves by Neron-Ogg-Shafarevich, and for abelian varieties
by Serre-Tate.

More generally, if X is a smooth proper variety which has good reduction then
all of its `-adic etale cohomology groups with ` 6= p are unramified. However, the
converse is not true, to which curves of genus at least two are counterexamples.
The implication of the form
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H i(X/K,Q`) is unramified for all i =⇒ X has good reduction

being false, one naturally considers its variations.
First, one may strengthen the assumption so that the good reduction of X can

be deduced. This approach is taken by T. Oda [8], where it was established that
if X is a curve then the triviality of the outer action of IK on suitable quotients of
the etale fundamental group of X implies that X has good reduction. Its p-adic
analogue has been established by Andreatta-Iovita-Kim [1]. In a similar spirit,
Chiarellotto-Lazda-Liedtke [2] considered K3 surfaces which potentially admit a
so-called Kulikov model, and showed that the unramifiedness of H i(X/K,Q`)
together with vanishing of a certain nonabelian cohomology class implies good
reduction.

Second, one may consider a particular type of varieties, and try to show the
converse. For example, Liedtke-Matsumoto [6] considered a K3 surface which
admits a potential semistable model, and established that the unramifiedness
of H2(X/K,Q`) implies the good reduction of X over an unramified extension
of K.

Third, one may weaken the conclusion, by aiming at something weaker than
good reduction. A prominent result in this direction is due to Rapoport-Zink [10].
They start with an integral model X/R which is semistable, which gives rise to
a filtration, called the weight filtration, of H i(X/K,Q`). The weight-monodromy
conjecture says that IK acts trivially on the graded quotients of the weight fil-
tration. Conditionally on the weight-monodromy conjecture, the cohomology
H i(X/K,Q`) is unramified if and only if the weight filtration on it has at most
one non-trivial graded quotient. If the characteristics of K and k are equal, then
the weight-monodromy conjecture is known in full generality by Ito [5] who re-
duced it to the cases established by Deligne [3]. Although the weight-monodromy
conjecture is not fully known in the mixed characteristic case, it is established for
surfaces by Rapoport-Zink [10] and for set theoretic complete intersections in a
smooth projective toric variety by Scholze [11]. Their p-adic analogues also exist,
notably due to Hyodo-Kato [4] and Mokrane [7].

In this short note, we consider a combination of the second and third variations,
in that the relation between the IK-action on H2(X/K,Q`) and properties of
integral models of a smooth surface X is investigated. Instead of starting from a
semistable model, we will assume, with a modest goal in mind, the existence of an
integral model X of X such that the special fibre Xk of X has at worst ordinary
double points. An ordinary double point is the singularity at the origin of the
affine equation z0z1 + z22 = 0, which is arguably the mildest singularity that can
occur in a surface. We further assume that p - 2`.

To each singular point x of Xk, we will define a numerical invariant nx, a positive
integer, which is determined by the formal neighborhood of x in X . Using this,
we define an invariant

g(X ) ∈ Z≥0,
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a nonnegative integer, to be the number of singular points x such that nx is odd.
On the Galois theoretic side, we will consider quadratic characters; surjective

homomorphisms GK � {±1}. A quadratic character will be called ramified if
its restriction to IK is non-trivial. Under the assumption p - 2, there is a unique
ramified quadratic character, which we will denote throughout by ψ. Recall that a
vector space with semisimple GK-action is ψ-isotypic if any non-trivial irreducible
GK-submodule is isomorphic to ψ.

Our main theorem relates g(X ) to the IK-action on H2(X/K,Q`).

Theorem. Assume p - 2`. The codimension of H2(X/K,Q`)
IK in H2(X/K,Q`)

is equal to g(X ). Furthermore, the quotient H2(X/K,Q`)/H
2(X/K,Q`)

IK is ψ-
isotypic for the IK-action.

We sketch its proof. The crucial ingredients are the Rapoport-Zink spectral
sequence and the weight-monodromy theorem. In order to apply these tools,
we first construct a (potential) semistable model X ss of X. More precisely, we
construct a particular semistable model X ss/RL of X/L, where L/K is the unique
ramified quadratic extension of K with valuation ring RL. This semistable model
further enjoys the property that the Galois action of Gal(L/K) on X/L extends
to X/RL in a way that it is compatible with its action on RL. The analysis of
the Gal(L/K)-action on the Rapoport-Zink spectral spectral sequence for X ss/RL
will yield the above theorem.

The techniques employed in the above sketch of proof are rather similar to
those in [6]. The authors of [6] investigated K3 surfaces X/K such that it has a
potential semistable reduction over some Galois extension K ′/K. Although such
a smooth model X of X/K ′ may not admit an action of Gal(K ′/K), they showed
that there is always a birational modification X ′ of X , such that Gal(K ′/K) acts
on X ′, and that X ′k has at worst rational double points.

Note that the ordinary double point is the simplest kind among the rational
double points, so in terms of the singularities involved our scope is more limited.
We have a relative advantage to be able to construct an explicit semistable model
over L with Galois action.

What is not attempted in the present article includes two natural questions.
One is whether our method can be generalized to rational double points. The
other is to find an approach which does not rely on the assumption p > 2, whence
it works for all residue characteristics.
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2. Statement of main result

2.1. A numerical invariant g(X ). We would like to define a numerical invariant
of an integral model X of a smooth proper surface X/K. In fact, it is determined

by X/K̆ where K̆ is the completion of the maximal unramified extension of K.

We will assume, in this subsection, that k is separably closed, and that K = K̆.
For every singular point x of Xk, the formal neighborhood of x in X has the

coordinate ring isomorphic to

A :=
R[[z0, z1, z2]]

z22 + z0z1 + r
(2.1.1)

with some r ∈ p. Because X is smooth, r is unequal to zero. Let nx be the p-adic
order of r, so r ∈ pnx and r 6∈ pnx+1. In particular, for any ordinary double point
x ∈ Xk, we have nx ∈ Z and nx ≥ 1.

Proposition 2.1.2. The number nx is well-defined.

Proof. Consider the sheaf Ω1
X/R of relative differentials of X → SpecR. Let Ix

be the stalk of the zeroth Fitting ideal of Ω1
X/R. We claim that, if Ox is the

local ring of germs of functions near x, then nx is equal to the length of Ox/Ix as
an Ox-module.

From (2.1.1), one can present Ω1
A/R as the A-module generated by dzi, i =

0, 1, 2, subject to the relation z0dz1 + z1dz0 + 2z2dz2 = 0. Its zeroth Fitting
ideal is therefore generated by z0, z1, and 2z2. Since we are assuming that p - 2,
the last generator 2z2 may be replaced with z2 without affecting the ideal. The
quotient B = A/(z0, z1, z2) has length nx as an A-module, because the filtration
0 = πnxB ⊂ πnx−1B ⊂ · · · ⊂ B yields nx irreducible subquotients of B.

To conclude, this provides us with an intrinsic definition of nx. �

Definition 2.1.3. Let X be a smooth surface with an integral model X such
that Xk has at worst ordinary double points. We define g(X ) to be the number
of singular points x in Xk such that nx is odd.

Without assuming K = K̆, we simply define g(X ) to be g(X/R̆), where R̆ is

the valuation ring of K̆.

2.2. The statement. Here we state our main theorem and its corollaries, whose
proofs will be given in § 3. We keep the assumptions of the previous subsection.
In particular, K = K̆ and X is an integral model of a smooth surface X/K, such
that Xk has at worst ordinary double points. Our main theorem is the following.

Theorem 2.2.1. Assume p - 2`. The codimension of H2(X/K,Q`)
IK in H2(X/K,Q`)

is equal to g(X ). Furthermore, the quotient H2(X/K,Q`)/H
2(X/K,Q`)

IK is ψ-
isotypic for the IK-action.

As an immediate corollary, we obtain:-
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Corollary 2.2.2. Suppose that X and X ′ are two integral models of a smooth
surface X/K such that their special fibres have at worst ordinary double points.
Then we have g(X ) = g(X ′).

3. The proof of the main theorem

We will prove Theorem 2.2.1 in this section. We will first construct a (potential)
semistable model, from which the theorem will follow by invoking the Rapoport-
Zink spectral sequence and the weight-monodromy theorem.

3.1. Constructing a good semistable model. Let π be a fixed uniformizer
of R. Consider the algebra

An = R[z0, z1, z2]/(z
2
2 + z0z1 + πn)(3.1.1)

for some positive integer n, and let Zn/R be the formal neighborhood of the
singular point (z0, z1, z2) = (0, 0, 0) in the reduction An/πAn of (3.1.1). Our aim
is to describe a potential semistable model of Zn. In fact, our semistable model
will be defined over L = K(

√
π), which is the field cut out by the unique ramified

quadratic character ψ ofGK . Our semistable model will have an additional feature
that the Galois group Gal(L/K) acts on it in a way that the action extends the
natural Galois action on the generic fibre, and that the action is compatible with
its action on RL, the valuation ring of L.

We denote respectively the generic and the special fibre of Zn by Zn and Zn.
Let x ∈ Zn(k) be the singular point with coordinate (0, 0, 0). Let BlxZn be the
blowup of Zn at x.

Proposition 3.1.2. Suppose that n > 2. Then the special fibre of BlxZn is
reduced and has two irreducible components which intersect transversally along
a projective line. One component is the minimal resolution of Zn. The other
component is a singular quadric and has an ordinary double point whose formal
neighborhood in BlxZn is isomorphic to Zn−2.

Proof. Let In ⊂ An be the ideal generated by z0, z1, z2, and π. The Rees alge-
bra A′n of In has equation

A′n = An[w0, w1, w2, w3]/I
′
n(3.1.3)

where I ′n is generated by the determinants of 2× 2 minors of the matrix[
z0 z1 z2 π
w0 w1 w2 w3

]
(3.1.4)

together with

z0w1 + z2w2 + πn−1w3, w0w1 + w2
2 + πn−2w2

3.(3.1.5)

We describe the irreducible components of the special fibre of BlxZn. There are
two components, that are respectively defined by z0 = z1 = z2 = 0 and w3 = 0.

The component defined by z0 = z1 = z2 = 0 is equal to the blowup of Zn at its
singular point, whence is equal to the minimal resolution of it.
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The other component is a singular quadric, whose homogeneous ring of coordi-
nates is k[w0, w1, w2, w3]/(w0w1 + w2

2).
The chart with w3 6= 0 has the coordinate ring

R[w0, w1, w2]

(w0w1 + w2
2 + πn−2)

(3.1.6)

which has a unique singular point in the special fibre whose neighborhood is Zn−2.
The chart with w2 6= 0 has the coordinate ring

R[w0, w1, w3, z]

(w3z2 − π,w0w1 + w2
3π

n−2 + 1)
(3.1.7)

which is semistable. The chart with w1 6= 0 has the coordinate ring

R[w0, w3, z2]

(w3z2 + π)
,(3.1.8)

and the chart with w0 6= 0 has the coordinate ring

R[w1, w3, z0]

(w3z0 + π)
,(3.1.9)

both of which are semistable. �

Proposition 3.1.10. Suppose that n = 2. Then the special fibre of BlxZn is
reduced and has two irreducible components which intersect transversally. One
component is the minimal resolution of Zn. The other component is isomorphic
to a smooth quadric surface.

Proof. We first note that the computation of Rees algebra in the proof of Propo-
sition 3.1.2 is valid for n = 2. In particular, BlxZn is represented by (3.1.3)
with n = 2, and its affine charts are given by (3.1.6), (3.1.7), (3.1.8), and (3.1.9).
In particular, the component of the special fibre defined by z0 = z1 = z2 = 0 has
the (homogeneous) coordinate ring

k[w0, w1, w2, w3]

(w0w1 + w2
2 + w2

3)
(3.1.11)

which defines a smooth quadric surface. �

Proposition 3.1.2 shows that a semistable model for Zn can be obtained from
that of Zn−2. Proposition 3.1.10 shows that for even n, a semistable model of Zn
can be found by iterated blowups.

When n is odd, we pass to the quadratic extension L of K. We consider the
special case n = 1.

Proposition 3.1.12. Suppose that n = 1. The special fibre of Blx (Z1/RL) is
reduced and has two irreducible components which intersect transversally. The
special fibre of Blx (Z1/RL) is decomposed into Z1,0 ∪Z1,1 where Z1,0 is the min-

imal resolution of Z1 and Z1,1 is a smooth quadric surface defined by (3.1.11).
The Galois group Gal(L/K) acts on BlxZ1/RL in the manner that it acts trivially
on Z1,0 and acts on Z1,1 by sending w3 to −w3.
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Proof. Without loss of generality, we choose πL to be a uniformizer of L such
that π2L = π. Then, Z1/RL has the form

z22 + z0z1 + π2L = 0(3.1.13)

to which Proposition 3.1.10 applies. Moreover, the center of blowup is defined
by the ideal (z0, z1, z2, πL), which is stable under the action of Gal(L/K). Hence
the Galois group Gal(L/K) acts on Blx (Z1/RL) in a way that it extends the
Galois action on X/L, and that it is compatible with its action on RL. By
Proposition 3.1.10, Z1,1 is defined by

w2
2 + w0w1 + w2

3 = 0(3.1.14)

where the variable wi for i = 0, 1, 2 corresponds to zi and w3 corresponds to πL.
The unique nontrivial element of Gal(L/K) fixes wi for i = 0, 1, 2, and sends w3

to −w3. �

Now we are ready to construct semistable models Zss
n of Zn. We consider even

and odd n’s separately. Let m be any positive integer and let n = 2m. We
obtain Zss

n by iteratively blowing up the ordinary double point in the singular
fibre m-times. When n = 2m − 1, then we pass to Zn/RL and iteratively blow
up the ordinary double point in the special fibre n-times to get Zss

n /RL. The
following propositions describe the special fibres of Zss

n /RL.

Proposition 3.1.15. Let n be any positive and even integer, say n = 2m. The
semistable R-model Zss

n of Zn has m + 1 components in its special fibre. One of
them is the minimal resolution of Zn, which we denote by Zn,0. One can write

Z
ss
n = Zn,0 ∪ Zn,1 ∪ · · · ∪ Zn,m(3.1.16)

where Zn,i is the component introduced at the i-th blowup for each i ≥ 1. For

each i ≥ 1, Zn,i is isomorphic to a smooth quadric. The dual graph of Z
ss
n is a

line segment, and the intersection of two adjacent components is isomorphic to a
projective line.

Proof. We apply Proposition 3.1.2 (m − 1)-times and apply Proposition 3.1.10.
For i = m, Zn,m is a smooth quadric by Proposition 3.1.10. For 1 ≤ i < m,

invoking Proposition 3.1.2, we observe that Zn,i is blowup of a singular quadric.
The resulting blowup is isomorphic to P1 × P1, or, equivalently, to a smooth
quadric. �

Proposition 3.1.17. Let n by any positive and odd integer, say n = 2m − 1.
The semistable RL-model Zss

n has an Gal(L/K)-action which extends the Galois
action on the generic fibre in a way which is compatible with its action on RL.
Its special fibre has has n+ 1 components. One of them is the minimal resolution
of Zn, which we denote by Zn,0. One can write

Z
ss
n = Zn,0 ∪ Zn,1 ∪ · · · ∪ Zn,n(3.1.18)
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where Zn,i is the component introduced at the i-th blowup for each i ≥ 1. In

particular, Zn,i is isomorphic to a smooth quadric surface for each i ≥ 1. The dual

graph of Z
ss
n is a line segment, and the intersection of two adjacent components

is isomorphic to a projective line. For each i ≥ 1, Zn,i is isomorphic to a smooth

quadric. For all i, Zn,i is stable under the action of Gal(L/K). If i < n, the
action is trivial. If i = n, the action is nontrivial, which is equivalent to the
action of Gal(L/K) on Z1,1 in Proposition 3.1.12.

Proof. It is similar to the proof of Proposition 3.1.15. �

3.2. Rapoport-Zink spectral sequence. We review the Rapoport-Zink spec-
tral sequence E•,•1 associated to X ss, with an emphasis on the terms that con-

tribute to H2(X/K,Q`). Let n be the number of irreducible components of X
ss

,
and let Vi for i = 1, 2, · · · , n be its irreducible components. Note that if i1, i2, i3
are distinct, then Vi1 ∩Vi2 ∩Vi3 = ∅. Also note that for all distinct pairs (i, j), the
cohomology of Vi ∩ Vj is concentrated in even degrees, because Vi ∩ Vj is either
empty or isomorphic to the projective line. These two facts about X ss greatly
simplify the spectral sequence. Indeed, the part of the spectral sequence which
computes H2(X/K,Q`) is given by a 3-term sequence⊕

1≤i<j≤n
H0(Vi ∩ Vj)

d−→
⊕

1≤i≤n
H2(Vi)

d′−→
⊕

1≤i<j≤n
H2(Vi ∩ Vj)(3.2.1)

where cohomology of an empty space is regarded as zero. The three terms
are respectively E−1,21 , E0,2

1 , and E1,2
1 . The first differential d is given by the

map H0(Vi∩Vj)→ H2(Vµ) which is the Gysin map if i = µ or j = µ, and zero oth-
erwise. Note that in this case the image of the Gysin map is generated by the cycle
class of Vi∩Vj . The second differential d′ is the sum of mapsH2(Vµ)→ H2(Vi∩Vj),
which is the pullback if i = µ, the negation of the pullback if j = µ, and zero
otherwise.

Proposition 3.2.2. We have a natural Gal(K/K)-equivariant isomorphism

Ker(d′)/Im(d) ∼= H2(X/K,Q`).(3.2.3)

Furthermore, the action of Gal(K/L) on H2(X/K,Q`) is trivial.

Proof. The Gal(K/L)-equivariant isomorphism is due to Rapoport-Zink. The
triviality of the Gal(K/L)-action follows from the weight-monodromy conjecture,
which is known for surfaces over a mixed characteristic local field by Rapoport-
Zink [10] and for all varieties over an equal characteristic local field by Ito [5].

Since the semistable model has an action of Gal(L/K), it induces an action on
the sequence (3.2.1). The functoriality of the Rapoport-Zink spectral sequence
implies that this action induces the action of Gal(L/K) on H2(X/K,Q`) via the
above isomorphism. �

Now we would like to analyze the action of Gal(L/K) on H2(X/K,Q`). In

order to do that, we compute the Galois action on Ei,21 for i = −1, 0, 1. Note
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that Gal(K/L) acts trivially on Ei,21 for all i = −1, 0, 1, and it remains to deter-
mine the action of Gal(L/K).

Proposition 3.2.4. The action of Gal(L/K) is trivial on E−1,21 and E1,2
1 .

Proof. It follows from the observation that the action of Gal(L/K) is trivial on Vi∩
Vj for every i, j with nonempty intersection. Indeed, if we let Vi be defined by the
equation w2

2 + w0w1 + w2
3 = 0, on which Gal(L/K) acts by sending w3 to −w3.

Our construction of the semistable model shows that the subvariety Vi∩Vj ⊂ Vi is
defined by w2

2 +w0w1+w2
3 and w3 = 0, and it follows that the action of Gal(L/K)

on Vi ∩ Vj is trivial. �

It remains to determine the action of Gal(L/K) on E0,2
1 . Recall that ψ is the

unique quadratic character of GK which induces the isomorphism Gal(L/K) ∼−→
{±1}.

Proposition 3.2.5. The dimension of the ψ-isotypic component of E0,2
1 is equal

to g(X ).

Proof. Let x be an ordinary double point of Xk with odd nx. Let m be the
positive integer with nx = 2m − 1. By our construction of X ss, there is a
natural map q : X ss

k → Xk, q−1(x) is the union of m smooth quadric surfaces.
Among the m smooth quadric surfaces, there is a unique surface, say Vx, on
which Gal(L/K) nontrivially, and the action is described in Proposition 3.1.12.
As a Gal(L/K)-representation, H2(Vx) is isomorphic to 1 ⊕ ψ, where 1 is the

trivial character. Therefore the dimension of the ψ-isotypic component of E0,2
1 is

at least g(X ).
On the other hand, if an irreducible component Vi of X ss

x is not equal to Vx
for some x with odd nx, then the action of Gal(L/K) on Vi is trivial. Hence the

dimension of the ψ-isotypic component of E0,2
1 is exactly g(X ). �

We can finally connect g(X ) to H2(X/K,Q`).

Proposition 3.2.6. The dimension of the ψ-isotypic component of H2(X/K,Q`)
is equal to g(X ).

Proof. It follows from combining Proposition 3.2.5 with Proposition 3.2.2 and
Proposition 3.2.4. �

The main theorem in the introduction follows from the above proposition.
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